

Critical care in acute liver failure

Dong Hyun Sinn M.D., Ph.D

Department of Medicine, Samsung Medical Center Sungkyunkwan University School of Medicine, Seoul, Korea

Definition and classification of liver failure

Things to consider in acute liver failure

Things to consider in acute on chronic liver failure

 Inability of the <u>liver</u> to perform its normal <u>synthetic</u> and <u>metabolic</u> function as part of normal physiology.

Clinical spectrum

- Acute loss of hepatocellular function
- Systemic inflammatory response
- Multi-organ system failure

Evidence of coagulation abnormality, usually an INR
≥1.5, and any degree of mental alteration
(encephalopathy) in a patient without preexisting
cirrhosis and with an illness of < 26 weeks' duration

- Measures of the extrinsic pathway of coagulation.
- Time it takes plasma to clot after addition of tissue factor.
- The speed is greatly affected by levels of factor VII.
- VII is synthesized in the liver
- Half-life is 3.5 hour

The most serious complication of acute liver failure

Case

• 42/M

- Heavy alcoholics (>100 g/d)
- URI symptoms for a weeks
- Sleeping tendency for 3-4 days
- Drowsy mental status
 - TB: 5.9 AST/ALT: 1123/2678 PT INR: 5.75
 - Brain CT: non specific
- Referred to ER

Case description

- Mental status: semicoma
- Icteric sclera
- LAB
 - TB: 10.2 AST/ALT: 351/1180 BUN/Cr: 52.3/2.51 PT INR: 2.05
 → Outside (TB: 5.9 AST/ALT: 1123/2678 PT INR: 5.75)
 - ABGA: 7.51-34-54-26.8
 - Lactic acid: 6.7
 - Viral marker: HBsAg- HBsAb+, HBclgG+, HAV IgM+, HAV IgG+, anti-HCV-

Clinical course

- Emergent living donor evaluation: deferred \rightarrow DDLT listing
- HD 1
 - Seizure developed \rightarrow not controlled
- HD 2
 - Aggravated neurologic exam, pupil (4mm/4mm fix)
- HD 3
 - EEG (electrical inactivity) CT angiography (no intracranial arterial blood flow)
 - Brain death
- HD 7
 - Expired (multi-organ failure)

Cerebral edema and intracranial hypertension.

- Pathogenesis: multi-factorial
 - Osmotic disturbances in the brain
 - Heightened cerebral blood flow d/t loss of cerebrovascular autoregulation
 - Unknown

- Acute liver failure
 - Coagulopathy
 - Encephalopathy

TABLE 5. GRADES OF ENCEPHALOPATHY

GRADE	DEFINITION
I	Changes in behavior with minimal change in level of consciousness
П	Gross disorientation, drowsiness, possibly asterixis, inappropriate behavior
Ш	Marked confusion; incoherent speech, sleeping most of the time but arousable to vocal stimuli
IV	Comatose, unresponsive to pain, decorticate or decerebrate posturing

Clinical spectrum: ACLF

- No uniform definition present!
- Under hot debate!

West vs. East

ACLF concept

Sarin et al., Hepatol Int 2014;8:453

Acute-on-chronic liver failure: consensus recommendations of the Asian Pacific Association for the Study of the Liver (APASL) 2014

The ACLF is an acute hepatic insult manifesting as **jaundice** (serum bilirubin :5 mg/dl) and **coagulopathy** (INR >1.5) complicated within 4 weeks by *clinical ascites and/or encephalopathy* in a patient with previously diagnosed or undiagnosed chronic liver disease/cirrhosis, and is associated with a high 28-day mortality.

EASL-CLIF definition (28d mortality >15%)

Table 1. CLIF-SOFA Score					
Organ/system	0	1	2	3	4
Liver (bilirubin, mg/dL)	<1.2	\geq 1.2 to \leq 2.0	≥2.0 to <6.0	≥6.0 to <12.0	≥12.0
Kidney (creatinine, mg/dL)	<1.2	\geq 1.2 to <2.0	≥2.0 to <3.5	≥3.5 to <5.0	≥5.0
			or	use of renal replaceme	nt therapy
Cerebral (HE grade)	No HE	I	I	III	IV
Coagulation (international normalized ratio)	<1.1	\geq 1.1 to <1.25	\geq 1.25 to <1.5	\geq 1.5 to $<$ 2.5	\geq 2.5 or platelet count \leq 20×10 ⁹ /L
Circulation (mean arterial pressure, <i>mm Hg</i>)	≥70	<70	Dopamine ≤5 or dobutamine or terlipressin	Dopamine >5 or E ≤0.1 or NE ≤0.1	Dopamine >15 or E >0.1 or NE >0.1
Lungs			-		
PaO/FiO_2 or	>400	>300 to ≤400	>200 to ≤300	>100 to ≤200	≤100
SpO ₂ /FiO ₂	>512	>357 to ≤512	>214 to ≤357	>89 to ≤214	≤89

• ACLF grade 1.

- Single kidney failure
- Single cerebral failure + Cr 1.5 and 1.9 mg/dL.
- Single failure of the liver, coagulation, circulation, or respiration + Cr 1.5 to 1.9 mg/ dL and/or mild to moderate hepatic encephalopathy,
- ACLF grade 2: 2 organ failures
- ACLF grade 3: more than 3 organ failure

- M/47
- Heavy alcoholics, known HBV (no tx history)
- Vibrio sepsis
 - Septic shock
 - Rt leg cellulitis \rightarrow necrosis \rightarrow fasciotomy
 - Renal failure with anuria \rightarrow CRRT
- HBV DNA
 - HBV DNA 8600 IU/ml \rightarrow entecavir start

Case

- Comatous metal status
- Lab
 - CBC: 12940 (90%)-11.2-62k
 - PT-INR: 2.2
 - Albumin: 3.4, Total bilirubin: 14.7, AST/ALT:49/27
 - BUN/Cr = 33.2/0.45 (on CRRT)
- ACLF type B (infection)

Hospital course (134 days, LT at HD 71)

Infarcted regenerative nodules, S8 and S4 (4 nodules, up to 0.3x0.3x0.3 cm)

Micronodular cirrhosis, active with marked cholestasis and bile duct proliferation, clinically HBVrelated

	EAST	WEST
Decompensated cirrhosis	No	Yes
Liver failure	Mandatory	Not mandatory
Non-hepatic insults (e.g., varix bleeding, infection)	Questionable	Yes

Decompensation: Varix bleeding, ascites, encephalopathy, Child-Pugh Class B

Case: LC-B, ascites → Pneumonia, complicated by renal failure (EAST: no!) (WEST: yes!)

 "ACLF is a syndrome in patients with chronic liver disease with or without previously diagnosed cirrhosis which is characterized by acute hepatic decompensation resulting in liver failure (jaundice and prolongation of the INR) and one or more extrahepatic organ failures that is associated with increased mortality within a period of 28 days and up to 3 months from onset."

World gastroenterology organization working party

Figure 1. Proposed unifying pathogenesis for different types of acute-on-chronic liver failure (ACLF).

SMC data

Survival by ACLF types

Overall survival

Transplant-free survival

No additional mortality after initial early period for type A Additional mortality even after 90 days for type B/C

Survival by ACLF type and transplantation

Characteristics by ACLF types

	Type A N=32	Type B N=55	Type C N=80	P-value
Age (year)	51.8±10.4	53.9 ±10.2	58.0 ±11.1	0.010
Male	20 (62.5)	32 (58.2)	59 (73.8)	0.15
PREDISPOSITION				<0.001
HBV	20 (62.5)	20 (36.4)	28 (35.0)	
Alcohol	4 (12.5)	25 (45.5)	33 (41.3)	
НСV	0 (0)	0 (0)	6 (7.5)	
Autoimmune	6 (18.8)	2 (3.6)	2 (2.5)	
Others	2 (6.3)	8 (14.5)	11 (13.8)	

Characteristics by ACLF types

	Туре А	Туре В	Туре С	P-value
HBV flare	16 (50.0)	12 (21.8)	4 (5.0)	< 0.001
Alcohol	3 (9.4)	19 (34.5)	6 (7.5)	< 0.001
HAV	3 (9.4)	1 (1.8)	1 (1.3)	0.061
Toxin	5 (15.6)	9 (16.4)	3 (3.8)	0.031
AIH flare	7 (21.9)	2 (3.6)	0 (0.0)	< 0.001
Infection	0 (0.0)	13 (23.6)	32 (40.0)	< 0.001
Varix bleeding	0 (0.0)	3 (5.5)	11 (13.8)	0.038
Other bleeding	0 (0.0)	2 (3.6)	6 (7.5)	0.21
Unknown	3 (9.4)	5 (9.1)	23 (28.8)	0.005

Characteristics by ACLF types

	Type A N=32	Type B N=55	Type C N=80	P-value
RESPONSE				
MELD score	29.2 ± 8.4	$\textbf{27.1} \pm \textbf{5.7}$	26.3 ± 6.3	0.11
SIRS	9 (28.1)	19 (34.5)	30 (37.5)	0.64
Organ failures by CLIF-SOFA				
Specific organ type				
Hepatic	25 (78.1)	43 (78.2)	28 (35.0)	< 0.001
Coagulation	9 (28.1)	12 (21.8)	21 (26.3)	0.76
Cerebral	2 (6.3)	4 (7.3)	11 (13.8)	0.33
Renal	7 (21.9)	5 (9.1)	17 (21.3)	0.14
Circulatory	1 (3.1)	4 (7.3)	16 (20.0)	0.018
Respiratory	2 (6.3)	1 (1.8)	4 (5.0)	0.53
Type of organ failure				<0.001
None	7 (21.9)	9 (16.4)	28 (35.0)	
Hepatic	13 (40.6)	26 (47.3)	11 (13.8)	
Hepatic + extrahepatic	12 (37.5)	17 (30.9)	17 (21.3)	
Extrahepatic	0 (0)	3 (5.5)	24 (30.0)	

ACLF type

Figure 1. Proposed unifying pathogenesis for different types of acute-on-chronic liver failure (ACLF).

- Acute liver failure
 - Coagulopathy
 - Encephalopathy

- Acute on chronic liver failure
 - Chronic liver disease (type A,B,C)
 - Acute deteriorated liver function (jaundice + coagulopathy)
 - Extrahepatic organ failure (encephalopathy and others...)

Take home message #1

- Definition and classification of liver failure
 - Acute liver failure
 - Acute on chronic liver failure
 - Type A
 - Type B
 - Type C

Things to consider in acute liver failure

Things to consider in acute on chronic liver failure

Things to consider in acute liver failure

The dangerous signal: Encephalopathy

■ Specific management? → look for etiology

High volume plasmapheresis?

Clinical Practice Guidelines

Hepatic Encephalopathy in Chronic Liver Disease: 2014 Practice Guideline by the European Association for the Study of the Liver and the American Association for the Study of Liver Diseases

American Association for the Study of Liver Diseases *.* European Association for the Study of the Liver*.*

Definition of HE

Hepatic encephalopathy is a brain dysfunction caused by liver insufficiency and/or PSS; it manifests as a wide spectrum of neurological or psychiatric abnormalities ranging from subclinical alterations to coma

Туре	Grade		Time course	Spontaneous or precipitated	
Δ	MHE	Courset	Episodic	Spontaneous	
	1	Covert			
B C	2		Recurrent		
	3	Overt		Precipitated	
	4		Persistent	(specify)	

HE type A (HE in ALF)

Cerebral Edema/Intracranial Hypertension

Grade I/II Encephalopathy

Consider transfer to liver transplant facility and listing for transplantation

Brain CT: rule out other causes of decreased mental status; little utility to

identify cerebral edema

Avoid stimulation; avoid sedation if possible

Antibiotics: surveillance and treatment of infection required; prophylaxis possibly helpful

Lactulose, possibly helpful

Grade III/IV Encephalopathy

Continue management strategies listed above

Intubate trachea (may require sedation)

Elevate head of bed

Consider placement of ICP monitoring device

Immediate treatment of seizures required; prophylaxis of unclear value

Mannitol: use for severe elevation of ICP or first clinical signs of herniation

Hypertonic saline to raise serum sodium to 145-155 mmol/L

Hyperventilation: effects short-lived; may use for impending herniation

N-actylcystein for acetaminophen, drug, HBV

Steroid for autoimmune hepatitis, drug

Antiviral agents for viral hepatitis

Acute liver failure (ALF)

- Drug induced-ALF (DI-ALF)
 - Intrinsic hepatotoxin (acetaminophen...)
 - Idiosyncratic drug reactions (presumably immunemediated liver injury due to the metabolic generation of a neo-antigen)

Steroid Use in Acute Liver Failure

Jamuna Karkhanis,¹ Elizabeth C. Verna,¹ Matthew S. Chang,¹ R. Todd Stravitz,² Michael Schilsky,³ William M. Lee,⁴ and Robert S. Brown, Jr.,¹ for the Acute Liver Failure Study Group

- Retrospective analysis
- Patients
 - AI-ALF (n = 66)
 - DI-ALF (n = 131, non-acetaminophen)
 - Indeterminate (n = 164)
- Steroid use
 - AI-ALF (25/66, 38%)
 - DI-ALF (16/131, 12%)
 - Indeterminate (21/164, 13%)

Steroid use in potentially immune mediated ALF

Fig. 1. Overall and spontaneous survival among different etiologies of ALF.

ALC: N

Steroid use in potentially immune mediated ALF

MELD Quartiles

Karkhanis et al., Hepatology 2014;59:612

OF A CONTRACT

Steroid use in potentially immune mediated ALF

Karkhanis et al., Hepatology 2014;59:612

ALC: N

- High MELD patients, may not benefit from steroid
- High AST/ALT, may help identify patients who will likely to respond from steroid

Controversial.

High volume plasmapheresis (HVP)

- HVP can remove albumin bound toxins as well as unbound toxins, including aromatic amino acids, ammonia, endotoxin, indols, mercaptans, phenols, and other factors which may be responsible for hepatic coma, hyperkinetic syndrome, and decreased systemic vascular resistance and cerebral blood flow.
- Improved cerebral blood flow, mean arterial, pressure (MAP), cerebral perfusion pressure, cerebral metabolic rate, increased hepatic blood flow, and improvements in other laboratory parameters such as cholinesterase activity or galactose elimination capacity.

Guidelines on the Use of Therapeutic Apheresis in Clinical Practice—Evidence-Based Approach from the Writing Committee of the American Society for Apheresis: The Seventh Special Issue

ACUTE LIVER FAILURE

Incidence: < 10/1,000,000/yr		Procedure TPE	Recommendation Grade 2B	Category III
		TPE-HV	Grade 1A	Ι
No. of reported patients: > 300	RCT	СТ	CS	CR
TPE	1(120)	1(158)	40(878)	54(73)
TPE-HV	1(182)	NA	NA	NA

TPE-HV: TPE-High Volume, not available in US.

Things to consider in acute liver failure

Things to consider in acute on chronic liver failure

Things to consider in acute on chronic liver failure

■ Specific management? → look for trigger

Critically ill patients with cirrhosis need a multidisciplinary approach

ACLF management

Events known to precipitate ACLF

- Acute hepatotrophic viral infection
 - Acute hepatitis A, B, D, E
 - Reactivation of hepatitis B
- Alcoholic hepatitis
- Drug induced liver injury
- Infection
- Gastointestinal bleeding
- Ischemia

Seminar

Management of the critically ill patient with cirrhosis: A multidisciplinary perspective

Mitra K. Nadim^{1,*}, Francois Durand², John A. Kellum³, Josh Levitsky⁴, Jacqueline G. O'Leary⁵, Constantine J. Karvellas⁶, Jasmohan S. Bajaj⁷, Andrew Davenport⁸, Rajiv Jalan⁹, Paolo Angeli¹⁰, Stephen H. Caldwell¹¹, Javier Fernández¹², Claire Francoz², Guadalupe Garcia-Tsao¹³, Pere Ginès¹², Michael G. Ison¹⁴, David J. Kramer¹⁵, Ravindra L. Mehta¹⁶, Richard Moreau², David Mulligan¹⁷, Jody C. Olson¹⁸, Elizabeth A. Pomfret¹⁹, Marco Senzolo²⁰, Randolph H. Steadman²¹, Ram M. Subramanian²², Jean-Louis Vincent²³, Yuri S. Genyk²⁴

J Hepatology 2016;64:717

Key recommendations for AKI

Replacement of

- isotonic crystalloids in cases of volume loss due to diarrhea or over diuresis (1D)
- blood in cases of acute gastrointestinal hemorrhage (1D),
- 20–25% albumin for infections (1A), suspected type-1 HRS (1A) or in cases where the cause of AKI is unclear (1D).

RRT indication

 worsening AKI, worsening fluid overload with >10% total body weight despite diuretic therapy or worsening acid-base status (1D).

Key recommendations for Cardio-pulmonary dysfunctions

- a mean arterial pressure 60 mmHg is usually appropriate (1D).
- therapeutic paracentesis in patients with tense ascites (1A).
- careful attention and monitoring of patients, preferably with a pulmonary artery catheter (PAC) or echocardiography, during fluid resuscitation to avoid development of fluid overload (1D).
- repeated measurements of blood lactate levels even though the interpretation may be complicated by the impaired clearance in cirrhosis (1A).

Key recommendations for choice of fluid

- crystalloid solutions as the initial fluid of choice in volume depleted patients (10–20 ml/kg) (1C).
- albumin (8 g/L of ascites removed) following large volume paracentesis
 (>5 L) (1B).
- concentrated albumin (1.5 g/kg on day one followed by 1 g/kg on day 3) for SBP (1B). → 보험급여됨(단 cr > 1mg/dL, BUN > 30mg/dL, Bilirubin > 4 mg/dL 0/어야함)
- crystalloids and a proportion of 4–5% albumin may be an option for suspected bacterial infection (2D).
- recommend against the use of hydroxyethyl starch (HES) (1B).

Key recommendations for shock

- norepinephrine as the first line vasopressor agent (1A).
- Vasopressin or terlipressin are appropriate second line agents for persistent hypotension (1B).
- A trial of hydrocortisone 200–300 mg/day in divided doses in patients with refractory hypotension should be started and stopped following improvement in hemodynamics (1C).

Key recommendations for antibiotics prophylaxis

 universal decontamination with intranasal mupirocin (twice daily) and chlorhexidine baths of ICU patients as part of a hospital wide plan to decrease bloodstream infections (2B).

Key recommendations for risk of bleeding

- INR does not provide an adequate assessment of hemostasis in cirrhosis (2B).
- recommend against routine prophylactic use of fresh frozen plasma (FFP) (1B).
- maintaining platelet counts above 50 X 10⁹/L in the presence of active bleeding (2C).
- hemoglobin transfusion trigger of 7 mg/dl (1A).
- anticoagulation with unfractionated/low molecular weight heparin in patients with occlusive portal vein thrombosis in the absence of bleeding risk factors (2C).
- maintaining fibrinogen levels >1.5 g/L in patients with significant bleeding or during invasive/surgical procedures (2C).

Take home message #2

- ALF management
 - Encephalopathy
 - Look for etiology
 - Consider high volume plasmapheresis

- ACLF management
 - Look for trigger
 - Multidisciplinary approach for organ failures